Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
RMD Open ; 8(1)2022 03.
Article in English | MEDLINE | ID: covidwho-2079028

ABSTRACT

BACKGROUND: The majority of patients with B-cell-depleting therapies show compromised vaccination-induced immune responses. Herein, we report on the trajectories of anti-SARS-CoV-2 immune responses in patients of the RituxiVac study compared with healthy volunteers and investigate the immunogenicity of a third vaccination in previously humoral non-responding patients. METHODS: We investigated the humoral and cell-mediated immune response after SARS-CoV-2 messanger RNA vaccination in patients with a history with anti-CD20 therapies. Coprimary outcomes were antispike and SARS-CoV-2-stimulated interferon-γ concentrations in vaccine responders 4.3 months (median; IQR: 3.6-4.8 months) after first evaluation, and humoral and cell-mediated immunity (CMI) after a third vaccine dose in previous humoral non-responders. Immunity decay rates were compared using analysis of covariance in linear regression. RESULTS: 5.6 months (IQR: 5.1-6.7) after the second vaccination, we detected antispike IgG in 88% (29/33) and CMI in 44% (14/32) of patients with a humoral response after two-dose vaccination compared with 92% (24/26) healthy volunteers with antispike IgG and 69% (11/16) with CMI 6.8 months after the second vaccination (IQR: 6.0-7.1). Decay rates of antibody concentrations were comparable between patients and controls (p=0.70). In two-dose non-responders, a third SARS-CoV-2 vaccine elicited humoral responses in 19% (6/32) and CMI in 32% (10/31) participants. CONCLUSION: This study reveals comparable immunity decay rates between patients with anti-CD20 treatments and healthy volunteers, but inefficient humoral or CMI after a third SARS-CoV-2 vaccine in most two-dose humoral non-responders calling for individually tailored vaccination strategies in this population.Trial registration numberNCT04877496; ClinicalTrials.gov number.


Subject(s)
COVID-19 , Viral Vaccines , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunity, Cellular , SARS-CoV-2 , Vaccines, Synthetic , mRNA Vaccines
2.
Ther Umsch ; 79(6): 289-294, 2022 Aug.
Article in German | MEDLINE | ID: covidwho-1972521

ABSTRACT

Secondary Immunodeficiency in Rheumatology Abstract. For the treatment of autoimmune and autoinflammatory diseases an immunosuppressive therapy with conventional, small molecule or biological disease modifying anti-rheumatic drugs (DMARDS) plays a key role. This may lead to secondary immunodeficiency with an increased risk for infections, which we discuss in the present article. The risk for reactivation of chronic hepatitis B increases particularly with glucocorticoid dosages of ≥ 20mg/d for longer than four weeks, with B-cell-depleting therapies, followed by anti-TNF-α-inhibitors. The latter also represent a risk for the reactivation of latent tuberculosis. High doses of glucocorticosteroids for prolonged periods increase the risk for pneumonia with Pneumocystis jirovecii, especially if combined with other DMARDs. An elevated risk for Herpes zoster exists for B-cell depletion, TNF-α-inhibition and for JAK blockade. Severe immunosuppression (B-cell depletion, cyclophosphamide, mycophenolate mofetil, JAK inhibitors, prednisone ≥ 20mg/d or combination therapy) increase the risk for severe COVID-19 infections.


Subject(s)
Antirheumatic Agents , COVID-19 , Rheumatology , Antirheumatic Agents/adverse effects , Humans , Tumor Necrosis Factor Inhibitors , Tumor Necrosis Factor-alpha
4.
RMD Open ; 8(1)2022 02.
Article in English | MEDLINE | ID: covidwho-1666480

ABSTRACT

BACKGROUND: Immune responses on SARS-CoV-2 vaccination in patients receiving anti-CD20 therapies are impaired but vary considerably. We conducted a systematic review and meta-analysis of the literature on SARS-CoV-2 vaccine induced humoral and cell-mediated immune response in patients previously treated with anti-CD20 antibodies. METHODS: We searched PubMed, Embase, Medrxiv and SSRN using variations of search terms 'anti-CD20', 'vaccine' and 'COVID' and included original studies up to 21 August 2021. We excluded studies with missing data on humoral or cell-mediated immune response, unspecified methodology of response testing, unspecified timeframes between vaccination and blood sampling or low number of participants (≤3). We excluded individual patients with prior COVID-19 or incomplete vaccine courses. Primary endpoints were humoral and cell-mediated immune response rates. Subgroup analyses included time since anti-CD20 therapy, B cell depletion and indication for anti-CD20 therapy. We used random-effects models of proportions. FINDINGS: Ninety studies were assessed. Inclusion criteria were met by 23 studies comprising 1342 patients. Overall rate of humoral response was 0.40 (95% CI 0.35 to 0.47). Overall rate of cell-mediated immune responses was 0.71 (95% CI 0.57 to 0.87). A time interval >6 months since last anti-CD20 therapy was associated with higher humoral response rates with 0.63 (95% CI 0.53 to 0.72) versus <6 months 0.2 (95% CI 0.03 to 0.43); p=0<01. Similarly, patients with circulating B cells more frequently showed humoral responses. Anti-CD20-treated kidney transplant recipients showed lower humoral response rates than patients with haematological malignancies or autoimmune disease. INTERPRETATION: Patients on anti-CD20 therapies can develop humoral and cell-mediated immune responses after SARS-CoV-2 vaccination, but subgroups such as kidney transplant recipients or those with very recent therapy and depleted B cell are at high risk for non-seroconversion and should be individually assessed for personalised SARS-CoV-2 vaccination strategies. Potential limitations are small patient numbers and heterogeneity of studies included. FUNDING: This study was funded by Bern University Hospital.


Subject(s)
COVID-19 Vaccines , COVID-19 , Antibodies, Viral , Humans , Immunity, Cellular , SARS-CoV-2
5.
Lancet Rheumatol ; 3(11): e789-e797, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1401979

ABSTRACT

BACKGROUND: B-cell-depleting therapies increase the risk of morbidity and mortality due to COVID-19. Evidence-based SARS-CoV-2 vaccination strategies for patients on B-cell-depleting therapies are scarce. We aimed to investigate humoral and cell-mediated immune responses to SARS-CoV-2 mRNA-based vaccines in patients receiving CD20-targeted B-cell-depleting agents for autoimmune disease, malignancy, or transplantation. METHODS: The RituxiVac study was an investigator-initiated, single-centre, open-label study done at the Bern University Hospital (Bern, Switzerland). Patients with a treatment history of anti-CD20-depleting agents (rituximab or ocrelizumab) and with no previous history of SARS-CoV-2 infection were enrolled between April 26 and June 30, 2021, for analysis of humoral and cell-mediated immune responses (by interferon-γ [IFNγ] release assay) at least 4 weeks after completing vaccination against SARS-CoV-2. Healthy controls without a history of SARS-CoV-2 infection were also enrolled at least 4 weeks after completing vaccination against SARS-CoV-2. All study participants received two doses of either the Pfizer-BioNTech BNT162b2 vaccine or the Moderna mRNA-1273 vaccine. The primary outcome was the proportion of patients with a history of anti-CD20 treatment who showed a humoral immune response against the SARS-CoV-2 spike protein in comparison with immunocompetent controls. Prespecified secondary endpoints were the effect of anti-CD20 therapy (including time since last treatment and cumulative dose) on humoral or cell-mediated immune responses to SARS-CoV-2 vaccination, and biomarkers of immunocompetence. This study is registered with ClinicalTrials.gov, NCT04877496. FINDINGS: The final study population comprised 96 patients and 29 immunocompetent controls. The median age of patients was 67 years (IQR 57-72) and of controls was 54 years (45-62), and 51 (53%) of 96 patients and 19 (66%) of 29 controls were female. The median time since last anti-CD20 treatment was 1·07 years (IQR 0·48-2·55) and the median cumulative dose of an anti-CD20 depleting agent was 2·80 g (1·50-5·00). Anti-spike IgG antibodies were detected in 47 (49%) of 96 patients 1·79 months (IQR 1·16-2·48) after the second vaccine dose compared to 29 (100%) of 29 controls 1·81 months (1·17-2·48) after the second vaccine dose (p<0·001). SARS-CoV-2-specific IFNγ release was detected in 13 (20%) of 66 patients and 21 (75%) of 28 of healthy controls (p<0·001). Only nine (14%) of 66 patients were double positive for anti-SARS-CoV-2 spike IgG and cell-mediated responses, compared with 21 (75%) of 28 healthy controls (p<0·001). Time since last anti-CD20 therapy (>7·6 months; positive predictive value 0·78), peripheral CD19+ cell count (>27 cells per µL; positive predictive value 0·70), and CD4+ lymphocyte count (>653 cells per µL; positive predictive value 0·71) were predictive of humoral vaccine response (area under the curve [AUC] 67% [95% CI 56-78] for time since last anti-CD20 therapy, 67% [55-80] for peripheral CD19+ count, and 66% [54-79] for CD4+ count). INTERPRETATION: This study provides further evidence of blunted humoral and cell-mediated immune responses elicited by SARS-CoV-2 mRNA vaccines in patients with a history of CD20 B-cell-depleting treatment. Lymphocyte subpopulation counts were associated with vaccine response in this highly vulnerable population. On validation, these results could help guide both the administration of SARS-CoV-2 vaccines and B-cell-depleting agents in this population. FUNDING: Bern University Hospital.

6.
Praxis (Bern 1994) ; 110(7): 377-382, 2021.
Article in German | MEDLINE | ID: covidwho-1272830

ABSTRACT

The Long-COVID Syndrome - a New Clinical Picture after COVID-19 Infection Abstract. Long-term consequences are increasingly reported in the current literature after COVID-19 infections. Some patients suffer from persistent pulmonary and extrapulmonary symptoms even months after the acute infection. Pulmonary impairment, but also dysregulation and effects on immune system, cardiovascular system, neurological system, skin and kidney are described or anticipated. This mini review gives a short update to the practitioner about the current knowledge about Long COVID.


Subject(s)
COVID-19 , Humans , Lung , SARS-CoV-2 , Syndrome
7.
Pharmaceuticals (Basel) ; 13(9)2020 Sep 09.
Article in English | MEDLINE | ID: covidwho-760948

ABSTRACT

Herein, we discuss the potential role of folic acid-based radiopharmaceuticals for macrophage imaging to support clinical decision-making in patients with COVID-19. Activated macrophages play an important role during coronavirus infections. Exuberant host responses, i.e., a cytokine storm with increase of macrophage-related cytokines, such as TNFα, IL-1ß, and IL-6 can lead to life-threatening complications, such as acute respiratory distress syndrome (ARDS), which develops in approximately 20% of the patients. Diverse immune modulating therapies are currently being tested in clinical trials. In a preclinical proof-of-concept study in experimental interstitial lung disease, we showed the potential of 18F-AzaFol, an 18F-labeled folic acid-based radiotracer, as a specific novel imaging tool for the visualization and monitoring of macrophage-driven lung diseases. 18F-AzaFol binds to the folate receptor-beta (FRß) that is expressed on activated macrophages involved in inflammatory conditions. In a recent multicenter cancer trial, 18F-AzaFol was successfully and safely applied (NCT03242993). It is supposed that the visualization of activated macrophage-related disease processes by folate radiotracer-based nuclear imaging can support clinical decision-making by identifying COVID-19 patients at risk of a severe disease progression with a potentially lethal outcome.

SELECTION OF CITATIONS
SEARCH DETAIL